Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Emergence of linguistic conventions in multi-agent reinforcement learning (1811.07208v1)

Published 17 Nov 2018 in physics.soc-ph, cond-mat.stat-mech, and cs.CL

Abstract: Recently, emergence of signaling conventions, among which language is a prime example, draws a considerable interdisciplinary interest ranging from game theory, to robotics to evolutionary linguistics. Such a wide spectrum of research is based on much different assumptions and methodologies, but complexity of the problem precludes formulation of a unifying and commonly accepted explanation. We examine formation of signaling conventions in a framework of a multi-agent reinforcement learning model. When the network of interactions between agents is a complete graph or a sufficiently dense random graph, a global consensus is typically reached with the emerging language being a nearly unique object-word mapping or containing some synonyms and homonyms. On finite-dimensional lattices, the model gets trapped in disordered configurations with a local consensus only. Such a trapping can be avoided by introducing a population renewal, which in the presence of superlinear reinforcement restores an ordinary surface-tension driven coarsening and considerably enhances formation of efficient signaling.

Citations (11)

Summary

We haven't generated a summary for this paper yet.