Geometric Hardy and Hardy-Sobolev inequalities on Heisenberg groups (1811.07181v1)
Abstract: In this paper, we present the geometric Hardy inequality for the sub-Laplacian in the half-spaces on the stratified groups. As a consequence, we obtain the following geometric Hardy inequality in a half-space on the Heisenberg group with a sharp constant \begin{equation*} \int_{\mathbb{H}+} |\nabla_{H}u|p d\xi \geq \left(\frac{p-1}{p}\right)p \int_{\mathbb{H}+} \frac{\mathcal{W}(\xi)p}{dist(\xi,\partial \mathbb{H}+)p} |u|p d\xi, \,\, p>1, \end{equation*} which solves the conjecture in the paper \cite{Larson}. Also, we obtain a version of the Hardy-Sobolev inequality in a half-space on the Heisenberg group \begin{equation*} \left(\int_{\mathbb{H}+} |\nabla_{H} u|p d\xi - \left(\frac{p-1}{p}\right)p \int_{\mathbb{H}+} \frac{\mathcal{W}(\xi)p}{dist(\xi,\partial \mathbb{H}+)p} |u|p d\xi \right){\frac{1}{p}} \geq C \left(\int_{\mathbb{H}+} |u|{p*} d\xi\right){\frac{1}{p*}}, \end{equation*} where $dist(\xi,\partial \mathbb{H}+)$ is the Euclidean distance to the boundary, $p* := Qp/(Q-p)$, $2\leq p<Q$, and $$\mathcal{W}(\xi)=\left(\sum_{i=1}{n}\langle X_i(\xi), \nu \rangle2+\langle Y_i(\xi), \nu \rangle2\right){\frac{1}{2}},$$ is the angle function. For $p=2$, this gives the Hardy-Sobolev-Maz'ya inequality on the Heisenberg group.