Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Edge-Based Blur Kernel Estimation Using Sparse Representation and Self-Similarity (1811.07161v1)

Published 17 Nov 2018 in cs.CV

Abstract: Blind image deconvolution is the problem of recovering the latent image from the only observed blurry image when the blur kernel is unknown. In this paper, we propose an edge-based blur kernel estimation method for blind motion deconvolution. In our previous work, we incorporate both sparse representation and self-similarity of image patches as priors into our blind deconvolution model to regularize the recovery of the latent image. Since almost any natural image has properties of sparsity and multi-scale self-similarity, we construct a sparsity regularizer and a cross-scale non-local regularizer based on our patch priors. It has been observed that our regularizers often favor sharp images over blurry ones only for image patches of the salient edges and thus we define an edge mask to locate salient edges that we want to apply our regularizers. Experimental results on both simulated and real blurry images demonstrate that our method outperforms existing state-of-the-art blind deblurring methods even for handling of very large blurs, thanks to the use of the edge mask.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Jing Yu (99 papers)
  2. Zhenchun Chang (1 paper)
  3. Chuangbai Xiao (6 papers)

Summary

We haven't generated a summary for this paper yet.