High Granular Operator Spaces, and Less-Contaminated General Rough Mereologies (1811.06560v4)
Abstract: Granular operator spaces and variants had been introduced and used in theoretical investigations on the foundations of general rough sets by the present author over the last few years. In this research, higher order versions of these are presented uniformly as partial algebraic systems. They are also adapted for practical applications when the data is representable by data table-like structures according to a minimalist schema for avoiding contamination. Issues relating to valuations used in information systems or tables are also addressed. The concept of contamination introduced and studied by the present author across a number of her papers, concerns mixing up of information across semantic domains (or domains of discourse). Rough inclusion functions (\textsf{RIF}s), variants, and numeric functions often have a direct or indirect role in contaminating algorithms. Some solutions that seek to replace or avoid them have been proposed and investigated by the present author in some of her earlier papers. Because multiple kinds of solution are of interest to the contamination problem, granular generalizations of RIFs are proposed, and investigated. Interesting representation results are proved and a core algebraic strategy for generalizing Skowron-Polkowski style of rough mereology (though for a very different purpose) is formulated. A number of examples have been added to illustrate key parts of the proposal in higher order variants of granular operator spaces. Further algorithms grounded in mereological nearness, suited for decision-making in human-machine interaction contexts, are proposed by the present author. Applications of granular \textsf{RIF}s to partial/soft solutions of the inverse problem are also invented in this paper.