Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A note on hyperparameters in black-box adversarial examples (1811.06539v1)

Published 15 Nov 2018 in cs.CR and cs.LG

Abstract: Since Biggio et al. (2013) and Szegedy et al. (2013) first drew attention to adversarial examples, there has been a flood of research into defending and attacking machine learning models. However, almost all proposed attacks assume white-box access to a model. In other words, the attacker is assumed to have perfect knowledge of the models weights and architecture. With this insider knowledge, a white-box attack can leverage gradient information to craft adversarial examples. Black-box attacks assume no knowledge of the model weights or architecture. These attacks craft adversarial examples using information only contained in the logits or hard classification label. Here, we assume the attacker can use the logits in order to find an adversarial example. Empirically, we show that 2-sided stochastic gradient estimation techniques are not sensitive to scaling parameters, and can be used to mount powerful black-box attacks requiring relatively few model queries.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Jamie Hayes (47 papers)

Summary

We haven't generated a summary for this paper yet.