Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

To bee or not to bee: Investigating machine learning approaches for beehive sound recognition (1811.06016v2)

Published 14 Nov 2018 in cs.SD and eess.AS

Abstract: In this work, we aim to explore the potential of machine learning methods to the problem of beehive sound recognition. A major contribution of this work is the creation and release of annotations for a selection of beehive recordings. By experimenting with both support vector machines and convolutional neural networks, we explore important aspects to be considered in the development of beehive sound recognition systems using machine learning approaches.

Citations (45)

Summary

We haven't generated a summary for this paper yet.