Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Probabilistic Random Forest: A machine learning algorithm for noisy datasets (1811.05994v1)

Published 14 Nov 2018 in astro-ph.IM and cs.LG

Abstract: Machine learning (ML) algorithms become increasingly important in the analysis of astronomical data. However, since most ML algorithms are not designed to take data uncertainties into account, ML based studies are mostly restricted to data with high signal-to-noise ratio. Astronomical datasets of such high-quality are uncommon. In this work we modify the long-established Random Forest (RF) algorithm to take into account uncertainties in the measurements (i.e., features) as well as in the assigned classes (i.e., labels). To do so, the Probabilistic Random Forest (PRF) algorithm treats the features and labels as probability distribution functions, rather than deterministic quantities. We perform a variety of experiments where we inject different types of noise to a dataset, and compare the accuracy of the PRF to that of RF. The PRF outperforms RF in all cases, with a moderate increase in running time. We find an improvement in classification accuracy of up to 10% in the case of noisy features, and up to 30% in the case of noisy labels. The PRF accuracy decreased by less then 5% for a dataset with as many as 45% misclassified objects, compared to a clean dataset. Apart from improving the prediction accuracy in noisy datasets, the PRF naturally copes with missing values in the data, and outperforms RF when applied to a dataset with different noise characteristics in the training and test sets, suggesting that it can be used for Transfer Learning.

Citations (111)

Summary

We haven't generated a summary for this paper yet.