Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Bayesian Inversion (1811.05910v1)

Published 14 Nov 2018 in stat.ML, cs.LG, math.ST, and stat.TH

Abstract: Characterizing statistical properties of solutions of inverse problems is essential for decision making. Bayesian inversion offers a tractable framework for this purpose, but current approaches are computationally unfeasible for most realistic imaging applications in the clinic. We introduce two novel deep learning based methods for solving large-scale inverse problems using Bayesian inversion: a sampling based method using a WGAN with a novel mini-discriminator and a direct approach that trains a neural network using a novel loss function. The performance of both methods is demonstrated on image reconstruction in ultra low dose 3D helical CT. We compute the posterior mean and standard deviation of the 3D images followed by a hypothesis test to assess whether a "dark spot" in the liver of a cancer stricken patient is present. Both methods are computationally efficient and our evaluation shows very promising performance that clearly supports the claim that Bayesian inversion is usable for 3D imaging in time critical applications.

Citations (120)

Summary

We haven't generated a summary for this paper yet.