Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Measuring Road Network Topology Vulnerability by Ricci Curvature (1811.05743v2)

Published 14 Nov 2018 in cs.SI and physics.soc-ph

Abstract: Describing the basic properties of road network systems, such as their robustness, vulnerability, and reliability, has been a very important research topic in the field of urban transportation. Current research mainly uses several statistical indicators of complex networks to analyze the road network systems. However, these methods are essentially node-based. These node-based methods are more concerned with the number of connections between nodes, and lack of consideration for interactions. So, this leads to the well-known node paradox problem, and their ability of characterizing the local and intrinsic properties of a network is weak. From the perspective of network intrinsic geometry, this paper proposes a method for measuring road network vulnerability using a discrete Ricci curvature, which can identify the key sections of a road network and indicate its fragile elements. The results show that our method performs better than complex network statistics on measuring the vulnerability of a road network. Additionally, it can characterize the evolution of the road network vulnerability among different periods of time in the same city through our method. Finally, we compare our method with the previous method of centrality and show the different between them. This article provides a new perspective on a geometry to analyze the vulnerability of a road network and describes the inherent nature of the vulnerability of a road system from a new perspective. It also contributes to enriching the analytical methods of complex road networks.

Citations (35)

Summary

We haven't generated a summary for this paper yet.