Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Reduced-order modeling with artificial neurons for gravitational-wave inference (1811.05491v2)

Published 13 Nov 2018 in astro-ph.IM, gr-qc, and stat.ML

Abstract: Gravitational-wave data analysis is rapidly absorbing techniques from deep learning, with a focus on convolutional networks and related methods that treat noisy time series as images. We pursue an alternative approach, in which waveforms are first represented as weighted sums over reduced bases (reduced-order modeling); we then train artificial neural networks to map gravitational-wave source parameters into basis coefficients. Statistical inference proceeds directly in coefficient space, where it is theoretically straightforward and computationally efficient. The neural networks also provide analytic waveform derivatives, which are useful for gradient-based sampling schemes. We demonstrate fast and accurate coefficient interpolation for the case of a four-dimensional binary-inspiral waveform family, and discuss promising applications of our framework in parameter estimation.

Citations (51)

Summary

We haven't generated a summary for this paper yet.