Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bootstrapping the 3d Ising model at finite temperature (1811.05451v1)

Published 13 Nov 2018 in hep-th, cond-mat.stat-mech, and cond-mat.str-el

Abstract: We estimate thermal one-point functions in the 3d Ising CFT using the operator product expansion (OPE) and the Kubo-Martin-Schwinger (KMS) condition. Several operator dimensions and OPE coefficients of the theory are known from the numerical bootstrap for flat-space four-point functions. Taking this data as input, we use a thermal Lorentzian inversion formula to compute thermal one-point coefficients of the first few Regge trajectories in terms of a small number of unknown parameters. We approximately determine the unknown parameters by imposing the KMS condition on the two-point functions $\langle \sigma\sigma \rangle$ and $\langle \epsilon\epsilon \rangle$. As a result, we estimate the one-point functions of the lowest-dimension $\mathbb Z_2$-even scalar $\epsilon$ and the stress-energy tensor $T_{\mu \nu}$. Our result for $\langle \sigma\sigma \rangle$ at finite-temperature agrees with Monte-Carlo simulations within a few percent, inside the radius of convergence of the OPE.

Citations (26)

Summary

We haven't generated a summary for this paper yet.