Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Computing multiparameter persistent homology through a discrete Morse-based approach (1811.05396v1)

Published 13 Nov 2018 in cs.CG

Abstract: Persistent Homology (PH) allows tracking homology features like loops, holes and their higher-dimensional analogs, along with a single-parameter family of nested spaces. Currently, computing descriptors for complex data characterized by multiple functions is becoming an important task in several applications, including physics, chemistry, medicine, geography, etc. Multiparameter Persistent Homology (MPH) generalizes persistent homology opening to the exploration and analysis of shapes endowed with multiple filtering functions. Still, computational constraints prevent MPH to be feasible over real-sized data. In this paper, we consider discrete Morse Theory as a tool to simplify the computation of MPH on a multiparameter dataset. We propose a new algorithm, well suited for parallel and distributed implementations and we provide the first evaluation of the impact on MPH computations of a preprocessing approach.

Citations (26)

Summary

We haven't generated a summary for this paper yet.