Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exploring the Scope of Unconstrained Via Minimization by Recursive Floorplan Bipartitioning (1811.05161v1)

Published 13 Nov 2018 in cs.OH

Abstract: Random via failure is a major concern for post-fabrication reliability and poor manufacturing yield. A demanding solution to this problem is redundant via insertion during post-routing optimization. It becomes very critical when a multi-layer routing solution already incurs a large number of vias. Very few global routers addressed unconstrained via minimization (UVM) problem, while using minimal pattern routing and layer assignment of nets. It also includes a recent floorplan based early global routability assessment tool STAIRoute \cite{karb2}. This work addresses an early version of unconstrained via minimization problem during early global routing by identifying a set of minimal bend routing regions in any floorplan, by a new recursive bipartitioning framework. These regions facilitate monotone pattern routing of a set of nets in the floorplan by STAIRoute. The area/number balanced floorplan bipartitionining is a multi-objective optimization problem and known to be NP-hard \cite{majum2}. No existing approaches considered bend minimization as an objective and some of them incurred higher runtime overhead. In this paper, we present a Greedy as well as randomized neighbor search based staircase wave-front propagation methods for obtaining optimal bipartitioning results for minimal bend routing through multiple routing layers, for a balanced trade-off between routability, wirelength and congestion. Experiments were conducted on MCNC/GSRC floorplanning benchmarks for studying the variation of early via count obtained by STAIRoute for different values of the trade-off parameters ($\gamma, \beta$) in this multi-objective optimization problem, using $8$ metal layers. We studied the impact of ($\gamma, \beta$) values on each of the objectives as well as their linear combination function $Gain$ of these objectives.

Summary

We haven't generated a summary for this paper yet.