Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An adaptive reduced basis ANOVA method for high-dimensional Bayesian inverse problems (1811.05151v1)

Published 13 Nov 2018 in math.NA

Abstract: In Bayesian inverse problems sampling the posterior distribution is often a challenging task when the underlying models are computationally intensive. To this end, surrogates or reduced models are often used to accelerate the computation. However, in many practical problems, the parameter of interest can be of high dimensionality, which renders standard model reduction techniques infeasible. In this paper, we present an approach that employs the ANOVA decomposition method to reduce the model with respect to the unknown parameters, and the reduced basis method to reduce the model with respect to the physical parameters. Moreover, we provide an adaptive scheme within the MCMC iterations, to perform the ANOVA decomposition with respect to the posterior distribution. With numerical examples, we demonstrate that the proposed model reduction method can significantly reduce the computational cost of Bayesian inverse problems, without sacrificing much accuracy.

Citations (17)

Summary

We haven't generated a summary for this paper yet.