Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Recovery Map for Fermionic Gaussian Channels (1811.04956v3)

Published 12 Nov 2018 in quant-ph

Abstract: A recovery map effectively cancels the action of a quantum operation to a partial or full extent. We study the Petz recovery map in the case where the quantum channel and input states are fermionic and Gaussian. Gaussian states are convenient because they are totally determined by their covariance matrix and because they form a closed set under so-called Gaussian channels. Using a Grassmann representation of fermionic Gaussian maps, we show that the Petz recovery map is also Gaussian and determine it explicitly in terms of the covariance matrix of the reference state and the data of the channel. As a by-product, we obtain a formula for the fidelity between two fermionic Gaussian states. We also discuss subtleties arising from the singularities of the involved matrices.

Summary

We haven't generated a summary for this paper yet.