Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

High order VEM on curved domains (1811.04755v2)

Published 12 Nov 2018 in math.NA and cs.NA

Abstract: We deal with the virtual element method (VEM) for solving the Poisson equation on a domain $\Omega$ with curved boundaries. Given a polygonal approximation $\Omega_h$ of the domain $\Omega$, the standard order $m$ VEM [6], for $m$ increasing, leads to a suboptimal convergence rate. We adapt the approach of [16] to VEM and we prove that an optimal convergence rate can be achieved by using a suitable correction depending on high order normal derivatives of the discrete solution at the boundary edges of $\Omega_h$, which, to retain computability, is evaluated after applying the projector $\Pi\nabla$ onto the space of polynomials. Numerical experiments confirm the theory.

Citations (26)

Summary

We haven't generated a summary for this paper yet.