Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Input Perturbations for Adaptive Control and Learning (1811.04258v3)

Published 10 Nov 2018 in eess.SY, cs.LG, cs.RO, cs.SY, math.ST, and stat.TH

Abstract: This paper studies adaptive algorithms for simultaneous regulation (i.e., control) and estimation (i.e., learning) of Multiple Input Multiple Output (MIMO) linear dynamical systems. It proposes practical, easy to implement control policies based on perturbations of input signals. Such policies are shown to achieve a worst-case regret that scales as the square-root of the time horizon, and holds uniformly over time. Further, it discusses specific settings where such greedy policies attain the information theoretic lower bound of logarithmic regret. To establish the results, recent advances on self-normalized martingales together with a novel method of policy decomposition are leveraged.

Citations (45)

Summary

We haven't generated a summary for this paper yet.