Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Broadcasting on Random Directed Acyclic Graphs (1811.03946v3)

Published 7 Nov 2018 in cs.IT, math.IT, math.PR, math.ST, and stat.TH

Abstract: We study a generalization of the well-known model of broadcasting on trees. Consider a directed acyclic graph (DAG) with a unique source vertex $X$, and suppose all other vertices have indegree $d\geq 2$. Let the vertices at distance $k$ from $X$ be called layer $k$. At layer $0$, $X$ is given a random bit. At layer $k\geq 1$, each vertex receives $d$ bits from its parents in layer $k-1$, which are transmitted along independent binary symmetric channel edges, and combines them using a $d$-ary Boolean processing function. The goal is to reconstruct $X$ with probability of error bounded away from $1/2$ using the values of all vertices at an arbitrarily deep layer. This question is closely related to models of reliable computation and storage, and information flow in biological networks. In this paper, we analyze randomly constructed DAGs, for which we show that broadcasting is only possible if the noise level is below a certain degree and function dependent critical threshold. For $d\geq 3$, and random DAGs with layer sizes $\Omega(\log k)$ and majority processing functions, we identify the critical threshold. For $d=2$, we establish a similar result for NAND processing functions. We also prove a partial converse for odd $d\geq 3$ illustrating that the identified thresholds are impossible to improve by selecting different processing functions if the decoder is restricted to using a single vertex. Finally, for any noise level, we construct explicit DAGs (using expander graphs) with bounded degree and layer sizes $\Theta(\log k)$ admitting reconstruction. In particular, we show that such DAGs can be generated in deterministic quasi-polynomial time or randomized polylogarithmic time in the depth. These results portray a doubly-exponential advantage for storing a bit in DAGs compared to trees, where $d=1$ but layer sizes must grow exponentially with depth in order to enable broadcasting.

Citations (20)

Summary

We haven't generated a summary for this paper yet.