Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Global sensitivity analysis based on DIRECT-KG-HDMR and thermal optimization of pin-fin heat sink for the platform inertial navigation system (1811.03800v2)

Published 9 Nov 2018 in cs.CE

Abstract: In this study, in order to reduce the local high temperature of the platform in inertial navigation system (PINS), a pin-fin heat sink with staggered arrangement is designed. To reduce the dimension of the inputs and improve the efficiency of optimization, a feasible global sensitivity analysis (GSA) based on Kriging-High Dimensional Model Representation with DIviding RECTangles sampling strategy (DIRECT-KG-HDMR) is proposed. Compared with other GSA methods, the proposed method can indicate the effects of the structural and the material parameters on the maximum temperature at the bottom of the heat sink by using both sensitivity and coupling coefficients. From the results of GSA, it can be found that the structural parameters have greater effects on thermal performance than the material ones. Moreover, the coupling intensities between the structural and material parameters are weak. Therefore, the structural parameters are selected to optimize the thermal performance of the heat sink, and several popular optimization algorithms such as GA, DE, TLBO, PSO and EGO are used for the optimization. Moreover, steady thermal response of the PINS with the optimized heat sink is also studied, and its result shows that the maximum temperature of high temperature region of the platform is reduced by 1.09 degree Celsius compared with the PINS without the heat sink.

Summary

We haven't generated a summary for this paper yet.