Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Energy-Efficient Offloading in Mobile Edge Computing with Edge-Cloud Collaboration (1811.03767v1)

Published 9 Nov 2018 in cs.DC

Abstract: Multiple access mobile edge computing is an emerging technique to bring computation resources close to end mobile users. By deploying edge servers at WiFi access points or cellular base stations, the computation capabilities of mobile users can be extended. Existing works mostly assume the remote cloud server can be viewed as a special edge server or the edge servers are willing to cooperate, which is not practical. In this work, we propose an edge-cloud cooperative architecture where edge servers can rent for the remote cloud servers to expedite the computation of tasks from mobile users. With this architecture, the computation offloading problem is modeled as a mixed integer programming with delay constraints, which is NP-hard. The objective is to minimize the total energy consumption of mobile devices. We propose a greedy algorithm as well as a simulated annealing algorithm to effectively solve the problem. Extensive simulation results demonstrate that, the proposed greedy algorithm and simulated annealing algorithm can achieve the near optimal performance. On average, the proposed greedy algorithm can achieve the same application completing time budget performance of the Brute Force optional algorithm with only 31\% extra energy cost. The simulated annealing algorithm can achieve similar performance with the greedy algorithm.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Xin Long (10 papers)
  2. Jigang Wu (10 papers)
  3. Long Chen (395 papers)
Citations (20)

Summary

We haven't generated a summary for this paper yet.