Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fully Asynchronous Stochastic Coordinate Descent: A Tight Lower Bound on the Parallelism Achieving Linear Speedup (1811.03254v4)

Published 8 Nov 2018 in math.OC and cs.DC

Abstract: We seek tight bounds on the viable parallelism in asynchronous implementations of coordinate descent that achieves linear speedup. We focus on asynchronous coordinate descent (ACD) algorithms on convex functions which consist of the sum of a smooth convex part and a possibly non-smooth separable convex part. We quantify the shortfall in progress compared to the standard sequential stochastic gradient descent. This leads to a simple yet tight analysis of the standard stochastic ACD in a partially asynchronous environment, generalizing and improving the bounds in prior work. We also give a considerably more involved analysis for general asynchronous environments in which the only constraint is that each update can overlap with at most q others. The new lower bound on the maximum degree of parallelism attaining linear speedup is tight and improves the best prior bound almost quadratically.

Citations (1)

Summary

We haven't generated a summary for this paper yet.