Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SCALE-Sim: Systolic CNN Accelerator Simulator (1811.02883v2)

Published 16 Oct 2018 in cs.DC and cs.AR

Abstract: Systolic Arrays are one of the most popular compute substrates within Deep Learning accelerators today, as they provide extremely high efficiency for running dense matrix multiplications. However, the research community lacks tools to insights on both the design trade-offs and efficient mapping strategies for systolic-array based accelerators. We introduce Systolic CNN Accelerator Simulator (SCALE-Sim), which is a configurable systolic array based cycle accurate DNN accelerator simulator. SCALE-Sim exposes various micro-architectural features as well as system integration parameters to the designer to enable comprehensive design space exploration. This is the first systolic-array simulator tuned for running DNNs to the best of our knowledge. Using SCALE-Sim, we conduct a suite of case studies and demonstrate the effect of bandwidth, data flow and aspect ratio on the overall runtime and energy of Deep Learning kernels across vision, speech, text, and games. We believe that these insights will be highly beneficial to architects and ML practitioners.

Citations (137)

Summary

We haven't generated a summary for this paper yet.