Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sparse and Smooth Signal Estimation: Convexification of L0 Formulations (1811.02655v3)

Published 6 Nov 2018 in stat.ML, cs.LG, and eess.SP

Abstract: Signal estimation problems with smoothness and sparsity priors can be naturally modeled as quadratic optimization with $\ell_0$-"norm" constraints. Since such problems are non-convex and hard-to-solve, the standard approach is, instead, to tackle their convex surrogates based on $\ell_1$-norm relaxations. In this paper, we propose a new iterative (convex) conic quadratic relaxations that exploit not only the $\ell_0$-"norm" terms, but also the fitness and smoothness functions. The iterative convexification approach substantially closes the gap between the $\ell_0$-"norm" and its $\ell_1$ surrogate. These stronger relaxations lead to significantly better estimators than $\ell_1$-norm approaches and also allow one to utilize affine sparsity priors. In addition, the parameters of the model and the resulting estimators are easily interpretable. Experiments with a tailored Lagrangian decomposition method indicate that the proposed iterative convex relaxations \rev{yield solutions within 1\% of the exact $\ell_0$ approach, and can tackle instances with up to 100,000 variables under one minute.

Citations (39)

Summary

We haven't generated a summary for this paper yet.