Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Volumetric Convolutional Neural Network for Brain Tumor Segmentation (1811.02654v1)

Published 27 Oct 2018 in cs.CV, cs.LG, and stat.ML

Abstract: Brain cancer can be very fatal, but chances of survival increase through early detection and treatment. Doctors use Magnetic Resonance Imaging (MRI) to detect and locate tumors in the brain, and very carefully analyze scans to segment brain tumors. Manual segmentation is time consuming and tiring for doctors, and it can be difficult for them to notice extremely small abnormalities. Automated segmentations performed by computers offer quicker diagnoses, the ability to notice small details, and more accurate segmentations. Advances in deep learning and computer hardware have allowed for high-performing automated segmentation approaches. However, several problems persist in practice: increased training time, class imbalance, and low performance. In this paper, I propose applying V-Net, a volumetric, fully convolutional neural network, to segment brain tumors in MRI scans from the BraTS Challenges. With this approach, I achieve a whole tumor dice score of 0.89 and train the network in a short time while addressing class imbalance with the use of a dice loss layer. Then, I propose applying an existing technique to improve automated segmentation performance in practice.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Ryan Sherman (1 paper)
Citations (4)

Summary

We haven't generated a summary for this paper yet.