Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Nonlinear Evolution via Spatially-Dependent Linear Dynamics for Electrophysiology and Calcium Data (1811.02459v3)

Published 6 Nov 2018 in stat.ML, cs.LG, q-bio.NC, and q-bio.QM

Abstract: Latent variable models have been widely applied for the analysis of time series resulting from experimental neuroscience techniques. In these datasets, observations are relatively smooth and possibly nonlinear. We present Variational Inference for Nonlinear Dynamics (VIND), a variational inference framework that is able to uncover nonlinear, smooth latent dynamics from sequential data. The framework is a direct extension of PfLDS; including a structured approximate posterior describing spatially-dependent linear dynamics, as well as an algorithm that relies on the fixed-point iteration method to achieve convergence. We apply VIND to electrophysiology, single-cell voltage and widefield imaging datasets with state-of-the-art results in reconstruction error. In single-cell voltage data, VIND finds a 5D latent space, with variables akin to those of Hodgkin-Huxley-like models. VIND's learned dynamics are further quantified by predicting future neural activity. VIND excels in this task, in some cases substantially outperforming current methods.

Citations (16)

Summary

We haven't generated a summary for this paper yet.