Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

User Specific Adaptation in Automatic Transcription of Vocalised Percussion (1811.02406v1)

Published 6 Nov 2018 in cs.SD and eess.AS

Abstract: The goal of this work is to develop an application that enables music producers to use their voice to create drum patterns when composing in Digital Audio Workstations (DAWs). An easy-to-use and user-oriented system capable of automatically transcribing vocalisations of percussion sounds, called LVT - Live Vocalised Transcription, is presented. LVT is developed as a Max for Live device which follows the `segment-and-classify' methodology for drum transcription, and includes three modules: i) an onset detector to segment events in time; ii) a module that extracts relevant features from the audio content; and iii) a machine-learning component that implements the k-Nearest Neighbours (kNN) algorithm for the classification of vocalised drum timbres. Due to the wide differences in vocalisations from distinct users for the same drum sound, a user-specific approach to vocalised transcription is proposed. In this perspective, a given end-user trains the algorithm with their own vocalisations for each drum sound before inputting their desired pattern into the DAW. The user adaption is achieved via a new Max external which implements Sequential Forward Selection (SFS) for choosing the most relevant features for a given set of input drum sounds.

Citations (4)

Summary

We haven't generated a summary for this paper yet.