Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Facing Device Attribution Problem for Stabilized Video Sequences (1811.01820v1)

Published 5 Nov 2018 in cs.MM

Abstract: A problem deeply investigated by multimedia forensics researchers is the one of detecting which device has been used to capture a video. This enables to trace down the owner of a video sequence, which proves extremely helpful to solve copyright infringement cases as well as to fight distribution of illicit material (e.g., underage clips, terroristic threats, etc.). Currently, the most promising methods to tackle this task exploit unique noise traces left by camera sensors on acquired images. However, given the recent advancements in motion stabilization of video content, robustness of sensor pattern noise-based techniques are strongly hindered. Indeed, video stabilization introduces geometric transformations between video frames, thus making camera fingerprint estimation problematic with classical approaches. In this paper, we deal with the challenging problem of attributing stabilized videos to their recording device. Specifically, we propose: (i) a strategy to extract the characteristic fingerprint of a device, starting from either a set of images or stabilized video sequences; (ii) a strategy to match a stabilized video sequence with a given fingerprint in order to solve the device attribution problem. The proposed methodology is tested on videos coming from a set of different smartphones, taken from the modern publicly available Vision Dataset. The conducted experiments also provide an interesting insight on the effect of modern smartphones video stabilization algorithms on specific video frames.

Citations (46)

Summary

We haven't generated a summary for this paper yet.