Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Network Slicing with Mobile Edge Computing for Micro-Operator Networks in Beyond 5G (1811.01744v1)

Published 1 Nov 2018 in cs.IT and math.IT

Abstract: We model the scenarios of network slicing allocation for the micro-operator (MO) network. The MO creates the slices "as a service" of wireless resource and then allocates these slices to multiple mobile network operators (MNOs). We propose the slice allocation problem of multiple MNOs with the goal of maximizing the social welfare of the network defined as sum rate of all MNOs. The many-to-one matching game framework is adopted to solve this problem. Then, the generic Markov Chain Monte Carlo (MCMC) method is introduced for the computation of game theoretical solution. After the MNOs obtain the slices, for each small cell base station (SBS), we investigate the role of power allocation using Q-learning and uniform power. We numerically show that the solution of the matching game leads to two-sided stable matching. Furthermore, for each MNO, we explore the problem of infrastructure cost minimization constrained on the latency at the user equipment (UE). The optimal solution is given by a greedy fractional knapsack algorithm. We illustrate that it is sufficient for the MNO to use a small fraction of the SBS to serve the UE while satisfying the latency constraint. For the problem of overall data rate maximization, we numerically show that the power allocation has significant effect on the social welfare of the system.

Citations (15)

Summary

We haven't generated a summary for this paper yet.