Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

IteRank: An iterative network-oriented approach to neighbor-based collaborative ranking (1811.01345v1)

Published 4 Nov 2018 in cs.IR and cs.SI

Abstract: Neighbor-based collaborative ranking (NCR) techniques follow three consecutive steps to recommend items to each target user: first they calculate the similarities among users, then they estimate concordance of pairwise preferences to the target user based on the calculated similarities. Finally, they use estimated pairwise preferences to infer the total ranking of items for the target user. This general approach faces some problems as the rank data is usually sparse as users usually have compared only a few pairs of items and consequently, the similarities among users is calculated based on limited information and is not accurate enough for inferring true values of preference concordance and can lead to an invalid ranking of items. This article presents a novel framework, called IteRank, that models the data as a bipartite network containing users and pairwise preferences. It then simultaneously refines users' similarities and preferences' concordances using a random walk method on this graph structure. It uses the information in this first step in another network structure for simultaneously adjusting the concordances of preferences and rankings of items. Using this approach, IteRank can overcome some existing problems caused by the sparsity of the data. Experimental results show that IteRank improves the performance of recommendation compared to the state of the art NCR techniques that use the traditional NCR framework for recommendation.

Citations (10)

Summary

We haven't generated a summary for this paper yet.