Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Inexact alternating projections on nonconvex sets (1811.01298v1)

Published 3 Nov 2018 in math.OC

Abstract: Given two arbitrary closed sets in Euclidean space, a simple transversality condition guarantees that the method of alternating projections converges locally, at linear rate, to a point in the intersection. Exact projection onto nonconvex sets is typically intractable, but we show that computationally-cheap inexact projections may suffice instead. In particular, if one set is defined by sufficiently regular smooth constraints, then projecting onto the approximation obtained by linearizing those constraints around the current iterate suffices. On the other hand, if one set is a smooth manifold represented through local coordinates, then the approximate projection resulting from linearizing the coordinate system around the preceding iterate on the manifold also suffices.

Summary

We haven't generated a summary for this paper yet.