Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
131 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On a certain subclass of strongly starlike functions (1811.01271v2)

Published 3 Nov 2018 in math.CV

Abstract: Let $\mathcal{S}*_t(\alpha_1,\alpha_2)$ denote the class of functions $f$ analytic in the open unit disc $\Delta$, normalized by the condition $f(0)=0=f'(0)-1$ and satisfying the following two--sided inequality: \begin{equation*} -\frac{\pi\alpha_1}{2}< \arg\left{\frac{zf'(z)}{f(z)}\right} <\frac{\pi\alpha_2}{2} \quad (z\in\Delta), \end{equation*} where $0<\alpha_1,\alpha_2\leq1$. The class $\mathcal{S}*_t(\alpha_1,\alpha_2)$ is a subclass of strongly starlike functions of order $\beta$ where $\beta=\max{\alpha_1,\alpha_2}$. The object of the present paper is to derive some certain inequalities including (for example), upper and lower bounds for ${\rm Re}{zf'(z)/f(z)}$, growth theorem, logarithmic coefficient estimates and coefficient estimates for functions $f$ belonging to the class $\mathcal{S}*_t(\alpha_1,\alpha_2)$.

Summary

We haven't generated a summary for this paper yet.