Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ReXCam: Resource-Efficient, Cross-Camera Video Analytics at Scale (1811.01268v4)

Published 3 Nov 2018 in cs.DC and cs.CV

Abstract: Enterprises are increasingly deploying large camera networks for video analytics. Many target applications entail a common problem template: searching for and tracking an object or activity of interest (e.g. a speeding vehicle, a break-in) through a large camera network in live video. Such cross-camera analytics is compute and data intensive, with cost growing with the number of cameras and time. To address this cost challenge, we present ReXCam, a new system for efficient cross-camera video analytics. ReXCam exploits spatial and temporal locality in the dynamics of real camera networks to guide its inference-time search for a query identity. In an offline profiling phase, ReXCam builds a cross-camera correlation model that encodes the locality observed in historical traffic patterns. At inference time, ReXCam applies this model to filter frames that are not spatially and temporally correlated with the query identity's current position. In the cases of occasional missed detections, ReXCam performs a fast-replay search on recently filtered video frames, enabling gracefully recovery. Together, these techniques allow ReXCam to reduce compute workload by 8.3x on an 8-camera dataset, and by 23x - 38x on a simulated 130-camera dataset. ReXCam has been implemented and deployed on a testbed of 5 AWS DeepLens cameras.

Citations (9)

Summary

We haven't generated a summary for this paper yet.