Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multilingual Embeddings Jointly Induced from Contexts and Concepts: Simple, Strong and Scalable (1811.00586v2)

Published 1 Nov 2018 in cs.CL

Abstract: Word embeddings induced from local context are prevalent in NLP. A simple and effective context-based multilingual embedding learner is Levy et al. (2017)'s S-ID (sentence ID) method. Another line of work induces high-performing multilingual embeddings from concepts (Dufter et al., 2018). In this paper, we propose Co+Co, a simple and scalable method that combines context-based and concept-based learning. From a sentence aligned corpus, concepts are extracted via sampling; words are then associated with their concept ID and sentence ID in embedding learning. This is the first work that successfully combines context-based and concept-based embedding learning. We show that Co+Co performs well for two different application scenarios: the Parallel Bible Corpus (1000+ languages, low-resource) and EuroParl (12 languages, high-resource). Among methods applicable to both corpora, Co+Co performs best in our evaluation setup of six tasks.

Citations (2)

Summary

We haven't generated a summary for this paper yet.