Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Precise asymptotics: robust stochastic volatility models (1811.00267v2)

Published 1 Nov 2018 in q-fin.PR and math.PR

Abstract: We present a new methodology to analyze large classes of (classical and rough) stochastic volatility models, with special regard to short-time and small noise formulae for option prices. Our main tool is the theory of regularity structures, which we use in the form of [Bayer et al; A regularity structure for rough volatility, 2017]. In essence, we implement a Laplace method on the space of models (in the sense of Hairer), which generalizes classical works of Azencott and Ben Arous on path space and then Aida, Inahama--Kawabi on rough path space. When applied to rough volatility models, e.g. in the setting of [Forde-Zhang, Asymptotics for rough stochastic volatility models, 2017], one obtains precise asymptotic for European options which refine known large deviation asymptotics.

Summary

We haven't generated a summary for this paper yet.