Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ATM:Adversarial-neural Topic Model (1811.00265v2)

Published 1 Nov 2018 in cs.AI

Abstract: Topic models are widely used for thematic structure discovery in text. But traditional topic models often require dedicated inference procedures for specific tasks at hand. Also, they are not designed to generate word-level semantic representations. To address these limitations, we propose a topic modeling approach based on Generative Adversarial Nets (GANs), called Adversarial-neural Topic Model (ATM). The proposed ATM models topics with Dirichlet prior and employs a generator network to capture the semantic patterns among latent topics. Meanwhile, the generator could also produce word-level semantic representations. To illustrate the feasibility of porting ATM to tasks other than topic modeling, we apply ATM for open domain event extraction. Our experimental results on the two public corpora show that ATM generates more coherence topics, outperforming a number of competitive baselines. Moreover, ATM is able to extract meaningful events from news articles.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Rui Wang (996 papers)
  2. Deyu Zhou (42 papers)
  3. Yulan He (113 papers)
Citations (81)