Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Spelling Error Correction Using a Nested RNN Model and Pseudo Training Data (1811.00238v1)

Published 1 Nov 2018 in cs.CL

Abstract: We propose a nested recurrent neural network (nested RNN) model for English spelling error correction and generate pseudo data based on phonetic similarity to train it. The model fuses orthographic information and context as a whole and is trained in an end-to-end fashion. This avoids feature engineering and does not rely on a noisy channel model as in traditional methods. Experiments show that the proposed method is superior to existing systems in correcting spelling errors.

Citations (25)

Summary

We haven't generated a summary for this paper yet.