Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards learning-to-learn (1811.00231v3)

Published 1 Nov 2018 in q-bio.NC and cs.LG

Abstract: In good old-fashioned artificial intelligence (GOFAI), humans specified systems that solved problems. Much of the recent progress in AI has come from replacing human insights by learning. However, learning itself is still usually built by humans -- specifically the choice that parameter updates should follow the gradient of a cost function. Yet, in analogy with GOFAI, there is no reason to believe that humans are particularly good at defining such learning systems: we may expect learning itself to be better if we learn it. Recent research in machine learning has started to realize the benefits of that strategy. We should thus expect this to be relevant for neuroscience: how could the correct learning rules be acquired? Indeed, cognitive science has long shown that humans learn-to-learn, which is potentially responsible for their impressive learning abilities. Here we discuss ideas across machine learning, neuroscience, and cognitive science that matter for the principle of learning-to-learn.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
Citations (19)