Resummation at finite conformal spin (1811.00213v3)
Abstract: We generalize the computation of anomalous dimension and correction to OPE coefficients at finite conformal spin considered recently in \cite{arXiv:1806.10919, arXiv:1808.00612} to arbitrary space-time dimensions. By using the inversion formula of Caron-Huot and the integral (Mellin) representation of conformal blocks, we show that the contribution from individual exchanges to anomalous dimensions and corrections to the OPE coefficients for "double-twist" operators $[\mathcal{O}1\mathcal{O}_2]{\Delta,J}$ in $s-$channel can be written at finite conformal spin in terms of generalized Wilson polynomials. This approach is democratic {\it wrt} space-time dimensions, thus generalizing the earlier findings to cases where closed form expressions of the conformal blocks are not available.