Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Many Moods of Emotion (1810.13197v1)

Published 31 Oct 2018 in cs.NE, cs.AI, and cs.CV

Abstract: This paper presents a novel approach to the facial expression generation problem. Building upon the assumption of the psychological community that emotion is intrinsically continuous, we first design our own continuous emotion representation with a 3-dimensional latent space issued from a neural network trained on discrete emotion classification. The so-obtained representation can be used to annotate large in the wild datasets and later used to trained a Generative Adversarial Network. We first show that our model is able to map back to discrete emotion classes with a objectively and subjectively better quality of the images than usual discrete approaches. But also that we are able to pave the larger space of possible facial expressions, generating the many moods of emotion. Moreover, two axis in this space may be found to generate similar expression changes as in traditional continuous representations such as arousal-valence. Finally we show from visual interpretation, that the third remaining dimension is highly related to the well-known dominance dimension from psychology.

Citations (2)

Summary

We haven't generated a summary for this paper yet.