Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Attentive Neural Network for Named Entity Recognition in Vietnamese (1810.13097v2)

Published 31 Oct 2018 in cs.CL

Abstract: We propose an attentive neural network for the task of named entity recognition in Vietnamese. The proposed attentive neural model makes use of character-based LLMs and word embeddings to encode words as vector representations. A neural network architecture of encoder, attention, and decoder layers is then utilized to encode knowledge of input sentences and to label entity tags. The experimental results show that the proposed attentive neural network achieves the state-of-the-art results on the benchmark named entity recognition datasets in Vietnamese in comparison to both hand-crafted features based models and neural models.

Citations (12)

Summary

We haven't generated a summary for this paper yet.