Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Schrödinger-Debye System in Compact Riemannian Manifolds (1810.12788v1)

Published 30 Oct 2018 in math.AP

Abstract: We consider the initial value problem (IVP) associated to the Schr\"odinger-Debye system posed on a $d$-dimensional compact Riemannian manifold $M$ and prove local well-posedness result for given data $(u_0, v_0)\in Hs(M)\times (Hs(M)\cap L{\infty}(M))$ whenever $s>\frac{d}2-\frac12$, $d\geq 2$. For $d=2$, we apply a sharp version of the Gagliardo-Nirenberg inequality in compact manifold to derive an a priori estimate for the $H1$-solution and use it to prove the global well-posedness result in this space.

Summary

We haven't generated a summary for this paper yet.