Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A proof of the first Kac-Weisfeiler conjecture in large characteristics (1810.12632v3)

Published 30 Oct 2018 in math.RT and math.RA

Abstract: In 1971, Kac and Weisfeiler made two influential conjectures describing the dimensions of simple modules of a restricted Lie algebra $\mathfrak{g}$. The first predicts the maximal dimension of simple $\mathfrak{g}$-modules and in this paper we apply the Lefschetz principle and classical techniques from Lie theory to prove this conjecture for all restricted Lie subalgebras of $\mathfrak{gl}_n(k)$ whenever $k$ is an algebraically closed field of characteristic $p \gg n$. As a consequence we deduce that the conjecture holds for the the Lie algebra of a group scheme when specialised to an algebraically closed field of almost any characteristic. In the appendix to this paper, written by Akaki Tikaradze, a short proof of the first Kac--Weisfeiler conjecture is given for the Lie algebra of group scheme over a finitely generated ring $R \subseteq \mathbb{C}$, after base change to a field of large positive characteristic.

Summary

We haven't generated a summary for this paper yet.