Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Weak-supervision for Deep Representation Learning under Class Imbalance (1810.12513v1)

Published 30 Oct 2018 in cs.LG and stat.ML

Abstract: Class imbalance is a pervasive issue among classification models including deep learning, whose capacity to extract task-specific features is affected in imbalanced settings. However, the challenges of handling imbalance among a large number of classes, commonly addressed by deep learning, have not received a significant amount of attention in previous studies. In this paper, we propose an extension of the deep over-sampling framework, to exploit automatically-generated abstract-labels, i.e., a type of side-information used in weak-label learning, to enhance deep representation learning against class imbalance. We attempt to exploit the labels to guide the deep representation of instances towards different subspaces, to induce a soft-separation of inherent subtasks of the classification problem. Our empirical study shows that the proposed framework achieves a substantial improvement on image classification benchmarks with imbalanced among large and small numbers of classes.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Shin Ando (4 papers)

Summary

We haven't generated a summary for this paper yet.