Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Simple Recurrent Unit with Reduced Tensor Product Representations (1810.12456v6)

Published 29 Oct 2018 in cs.NE, cs.LG, and cs.SC

Abstract: idely used recurrent units, including Long-short Term Memory (LSTM) and the Gated Recurrent Unit (GRU), perform well on natural language tasks, but their ability to learn structured representations is still questionable. Exploiting reduced Tensor Product Representations (TPRs) --- distributed representations of symbolic structure in which vector-embedded symbols are bound to vector-embedded structural positions --- we propose the TPRU, a simple recurrent unit that, at each time step, explicitly executes structural-role binding and unbinding operations to incorporate structural information into learning. A gradient analysis of our proposed TPRU is conducted to support our model design, and its performance on multiple datasets shows the effectiveness of our design choices. Furthermore, observations on a linguistically grounded study demonstrate the interpretability of our TPRU.

Citations (2)

Summary

We haven't generated a summary for this paper yet.