Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Complier stochastic direct effects: identification and robust estimation (1810.12452v1)

Published 29 Oct 2018 in stat.ME

Abstract: Mediation analysis is critical to understanding the mechanisms underlying exposure-outcome relationships. In this paper, we identify the instrumental variable (IV)-direct effect of the exposure on the outcome not through the mediator, using randomization of the instrument. To our knowledge, such an estimand has not previously been considered or estimated. We propose and evaluate several estimators for this estimand: a ratio of inverse-probability of treatment-weighted estimators (IPTW), a ratio of estimating equation estimators (EE), a ratio of targeted minimum loss-based estimators (TMLE), and a TMLE that targets the CSDE directly. These estimators are applicable for a variety of study designs, including randomized encouragement trials, like the MTO housing voucher experiment we consider as an illustrative example, treatment discontinuities, and Mendelian randomization. We found the IPTW estimator to be the most sensitive to finite sample bias, resulting in bias of over 40% even when all models were correctly specified in a sample size of N=100. In contrast, the EE estimator and compatible TMLE estimator were far less sensitive to finite samples. The EE and TMLE estimators also have advantages over the IPTW estimator in terms of efficiency and reduced reliance on correct parametric model specification.

Citations (7)

Summary

We haven't generated a summary for this paper yet.