Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Comment Generation by Leveraging User-Generated Data (1810.12264v2)

Published 29 Oct 2018 in cs.CL

Abstract: Existing models on open-domain comment generation are difficult to train, and they produce repetitive and uninteresting responses. The problem is due to multiple and contradictory responses from a single article, and by the rigidity of retrieval methods. To solve this problem, we propose a combined approach to retrieval and generation methods. We propose an attentive scorer to retrieve informative and relevant comments by leveraging user-generated data. Then, we use such comments, together with the article, as input for a sequence-to-sequence model with copy mechanism. We show the robustness of our model and how it can alleviate the aforementioned issue by using a large scale comment generation dataset. The result shows that the proposed generative model significantly outperforms strong baseline such as Seq2Seq with attention and Information Retrieval models by around 27 and 30 BLEU-1 points respectively.

Citations (18)

Summary

We haven't generated a summary for this paper yet.