Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Semi-unsupervised Learning of Human Activity using Deep Generative Models (1810.12176v2)

Published 29 Oct 2018 in stat.ML and cs.LG

Abstract: We introduce 'semi-unsupervised learning', a problem regime related to transfer learning and zero-shot learning where, in the training data, some classes are sparsely labelled and others entirely unlabelled. Models able to learn from training data of this type are potentially of great use as many real-world datasets are like this. Here we demonstrate a new deep generative model for classification in this regime. Our model, a Gaussian mixture deep generative model, demonstrates superior semi-unsupervised classification performance on MNIST to model M2 from Kingma and Welling (2014). We apply the model to human accelerometer data, performing activity classification and structure discovery on windows of time series data.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com