Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Evolutionary Self-Expressive Models for Subspace Clustering (1810.11957v1)

Published 29 Oct 2018 in cs.CV

Abstract: The problem of organizing data that evolves over time into clusters is encountered in a number of practical settings. We introduce evolutionary subspace clustering, a method whose objective is to cluster a collection of evolving data points that lie on a union of low-dimensional evolving subspaces. To learn the parsimonious representation of the data points at each time step, we propose a non-convex optimization framework that exploits the self-expressiveness property of the evolving data while taking into account representation from the preceding time step. To find an approximate solution to the aforementioned non-convex optimization problem, we develop a scheme based on alternating minimization that both learns the parsimonious representation as well as adaptively tunes and infers a smoothing parameter reflective of the rate of data evolution. The latter addresses a fundamental challenge in evolutionary clustering -- determining if and to what extent one should consider previous clustering solutions when analyzing an evolving data collection. Our experiments on both synthetic and real-world datasets demonstrate that the proposed framework outperforms state-of-the-art static subspace clustering algorithms and existing evolutionary clustering schemes in terms of both accuracy and running time, in a range of scenarios.

Citations (10)

Summary

We haven't generated a summary for this paper yet.