Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cross-Modal Distillation for RGB-Depth Person Re-Identification (1810.11641v3)

Published 27 Oct 2018 in cs.CV and eess.IV

Abstract: Person re-identification is a key challenge for surveillance across multiple sensors. Prompted by the advent of powerful deep learning models for visual recognition, and inexpensive RGB-D cameras and sensor-rich mobile robotic platforms, e.g. self-driving vehicles, we investigate the relatively unexplored problem of cross-modal re-identification of persons between RGB (color) and depth images. The considerable divergence in data distributions across different sensor modalities introduces additional challenges to the typical difficulties like distinct viewpoints, occlusions, and pose and illumination variation. While some work has investigated re-identification across RGB and infrared, we take inspiration from successes in transfer learning from RGB to depth in object detection tasks. Our main contribution is a novel method for cross-modal distillation for robust person re-identification, which learns a shared feature representation space of person's appearance in both RGB and depth images. In addition, we propose a cross-modal attention mechanism where the gating signal from one modality can dynamically activate the most discriminant CNN filters of the other modality. The proposed distillation method is compared to conventional and deep learning approaches proposed for other cross-domain re-identification tasks. Results obtained on the public BIWI and RobotPKU datasets indicate that the proposed method can significantly outperform the state-of-the-art approaches by up to 16.1% in mean Average Precision (mAP), demonstrating the benefit of the distillation paradigm. The experimental results also indicate that using cross-modal attention allows to improve recognition accuracy considerably with respect to the proposed distillation method and relevant state-of-the-art approaches.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Frank Hafner (1 paper)
  2. Amran Bhuiyan (9 papers)
  3. Julian F. P. Kooij (17 papers)
  4. Eric Granger (121 papers)
Citations (22)

Summary

We haven't generated a summary for this paper yet.