Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On invariant $1$-dimensional representations of a finite $W$-algebra (1810.11531v1)

Published 26 Oct 2018 in math.RT

Abstract: Let $\mathfrak{g}$ be a simple Lie algebra over $\mathbb{C}$ and $G$ be the corresponding simply connected algebraic group. Consider a nilpotent element $e\in \mathfrak{g}$, the corresponding element $\chi=(e, \bullet)$ in $\mathfrak{g}*$, and the coadjoint orbit $\mathbb{O}=G\chi$. We are interested in the set $\mathfrak{J}\mathfrak{d}1(\mathcal{W})$ of codimension $1$ ideals $J\subset \mathcal{W}$ in a finite $W$-algebra $\mathcal{W}=U(\mathfrak{g}, e)$. We have a natural action of the component group $\Gamma=Z_G(\chi)/Z_G\circ(\chi)$ on $\mathfrak{J}\mathfrak{d}1(\mathcal{W})$. Denote the set of $\Gamma$-stable points of $\mathfrak{J}\mathfrak{d}1(\mathcal{W})$ by $\mathfrak{J}\mathfrak{d}{1}(\mathcal{W}){\Gamma}$. For a classical $\mathfrak{g}$ Premet and Topley proved that $\mathfrak{J}\mathfrak{d}{1}(\mathcal{W}){\Gamma}$ is isomorphic to an affine space. In this paper we will give an easier and shorter proof of this fact.

Summary

We haven't generated a summary for this paper yet.